
Localized Dimension Growth in Random Network
Coding: A Convolutional Approach

Wangmei Guo, Ning Cai
The State Key Lab. of ISN,

Xidian University, Xi’an, China
Email: {wangmeiguo, caining}@mail.xidian.edu.cn

Xiaomeng Shi, Muriel Médard
Research Laboratory of Electronics,

MIT, Cambridge, USA
Email: {xshi, medard}@mit.edu

Abstract—We propose an efficient Adaptive Random Convolu-
tional Network Coding (ARCNC) algorithm to address the issue
of field size in random network coding. ARCNC operates as a
convolutional code, with the coefficients of local encoding kernels
chosen randomly over a small finite field. The lengths of local
encoding kernels increase with time until the global encoding
kernel matrices at related sink nodes all have full rank. Instead
of estimating the necessary field size a priori, ARCNC operates
in a small finite field. It adapts to unknown network topologies
without prior knowledge, by locally incrementing the dimension-
ality of the convolutional code. Because convolutional codes of
different constraint lengths can coexist in different portions of
the network, reductions in decoding delay and memory overheads
can be achieved with ARCNC. We show through analysis that this
method performs no worse than random linear network codes
in general networks, and can provide significant gains in terms
of average decoding delay in combination networks.

Index Terms—convolutional network code, random linear
network code, adaptive random convolutional network code,
combination networks

I. INTRODUCTION

Since its introduction [1], network coding has been shown
to offer advantages in throughput, power consumption, and
security in both wireline and wireless networks. Field size
and adaptation to unknown topologies are two of the key
issues in network coding. Li et al. showed constructively
that the max-flow bound is achievable by linear algebraic
network coding (ANC) if the field is sufficiently large for
a given deterministic multicast network [2], while Ho et al.
[3] proposed a distributed random linear algebraic network
code (RLNC) construction that achieves the multicast capacity
asymptotically in field size. Because of its simplicity and
the ability to adapt to unknown topologies, RLNC is often
preferred over deterministic network codes. While the con-
struction in [3] allows cycles, which leads to the creation of
convolutional codes, it does not make use of the convolutional
nature of the resulting codes to lighten bounds on field size,
which may need to be large to guarantee successful decoding
at all sinks. Both block network codes (BNC) [4], [5] and

This work is funded by CSC and the National Natural Science Foundation
of China (NSFC) under grant No.60832001, and partially presented in
conference AEW 2010; also based upon work supported under subcontract
RA306-S1 issued by the Georgia Institute of Technology, by the Claude
E. Shannon Research Assistantship awarded by the Research Laboratory of
Electronics, MIT, and by the NSERC Postgraduate Scholarship (PGS) issued
by the Natural Sciences and Engineering Research Council of Canada.

convolutional network codes (CNC) [6], [7] can mitigate the
field size requirements. Médard et al. introduced the concept
of vector, or block network codes (BNC) [4], and Xiao et al.
proposed a deterministic binary BNC to solve the combination
network problem [8]. BNC can operate on smaller finite
fields, but the block length may need to be pre-determined.
In discussing cyclic networks, both Li et al. and Ho et al.
pointed out the equivalence between ANC in cyclic networks
with delays, and CNC [2], [3]. Because of coding introduced
across the temporal domain, CNC does not have a field size
constraint. Even though degree growth of the encoding kernel
may lead to high computation complexity during decoding
when there are many coding nodes along a path to a sink, it
is often possible to achieve the network coding advantage by
coding at a subset of nodes only [9]. In addition, the structure
of CNC allows decoding to occur symbol-by-symbol, thus
offering gains in decoding delay. However, it may require long
coding kernels when the network is unknown. As discussed by
Jaggi et al. [10], there exists equivalence relationships between
ANC, BNC, and CNC. All three schemes require some prior
knowledge on the network topology. Overestimation for the
worst case assumption can be wasteful, leading to high com-
putation complexity, decoding delay, and memory overheads.

Our work extends the RLNC and CNC setup, allowing
nodes to locally grow the dimensionality of the code until nec-
essary. We propose an efficient adaptive random convolutional
network code (ARCNC) for multicast networks, with local
encoding kernels chosen randomly from a small field, and the
code constraint length incremented locally at each node. Our
scheme inherits the small field size property of CNC, while
taking advantage of the distributive nature of RLNC. The gains
offered by ARCNC are three-fold. First, it operates in a small
finite field. Second, it adapts to unknown network topologies
without prior knowledge. Last, the localized adaptation allows
convolutional codes with different code lengths to coexist
in different portions of the network, leading to reduction in
decoding delay and memory overheads associated with using
a pre-determined field size or code length.

The remainder of this paper is organized as follows: the AR-
CNC algorithm is proposed in Section II and its performance
analyzed in Section III. As an example, the advantages of
ARCNC is considered in a combination network in Section IV.
Section V concludes the paper.

II. ADAPTIVE RANDOMIZED CONVOLUTIONAL NETWORK
CODING ALGORITHM

A. Basic Model and Definitions

We first introduce definitions used throughout the paper.
We model a communication network as a finite directed
multigraph, denoted by G = (V, E). An edge represents a
noiseless communication channel on which one symbol is
transmitted per unit time. In this paper, we consider the
multicast case. The source node is denoted by s, and the set
of d sink nodes is denoted by T = {r1, . . . , rd} ⊂ V . For
every node v ∈ V , denote the sets of incoming and outgoing
channels to v by In(v) and Out(v). An ordered pair (e′, e) of
channels is called an adjacent pair when there exists a node v
with e′ ∈ In(v) and e ∈ Out(v).

The symbol alphabet is represented by a base field, Fq .
Assume s generates a message per unit time, consisting of
a fixed number m of symbols represented by an m-dim row
vector x ∈ Fm

q . We index time to start from 0, hence the
(t+1)-th coding round occurs at time t. Messages transmitted
by s is represented by a power series x(z) =

∑
t≥0 xtz

t,
where xt ∈ Fm

q is the message generated at t and z
denotes a unit-time delay. Data propagated over a channel
e ∈ Out(v) is ye(z), a linear function of the source message;
ye(z) = x(z)fe(z), where the m-dim column vector of
rational power series, fe(z) =

∑
t≥0 fe,tz

t, is called the
global encoding kernel over e. Viewed locally, ye(z) is a
linear combination of messages over all incoming channels to
node v; ye(z) =

∑
e′∈In(v) ke′,e(z)ye′(z), where ke′,e(z) =∑

t≥0 ke′,e,tz
t is the local encoding kernel over the adjacent

pair (e′, e). Hence, fe(z) =
∑

e′∈In(v) ke′,e(z)fe′(z). As
discussed in [6], ke′,e(z) and fe(z) are rational power series
in the form of p(z)

1+zq(z) , where p(z) and q(z) are polynomials.
Collectively, we call the |In(v)| × |Out(v)| matrix Kv(z) =
(ke′,e(z))e′∈In(v),e∈Out(v) the local encoding kernel matrix at
node v, and the m × |In(v)| matrix Fr(z) = (fe(z))e∈In(r)

the global encoding kernel matrix at sink r.

B. Algorithm Statement for Acyclic Networks

1) Encoding: at time 0, all local and global encoding ker-
nels are set to 0. Source s generates a message x =

∑
t≥0 xtz

t,
where xt consists of m symbols (xt,1, xt,2, · · · , xt,m). Each
intermediate node v, when a symbol is received on e′ ∈ In(v)
at time t, stores it in memory as ye′,t, and chooses the (t+1)-
th term ke′,e,t of the local encoding kernel ke′,e(z) uniformly
randomly from Fq for e ∈ Out(v). Node v assigns registers
to store ke′,e,t, and forms the outgoing symbol as

ye,t =
∑

e′∈In(v)

(
t∑

i=0

ke′,e,iye′,t−i

)
.

That is, the outgoing symbol is a random linear combination
of symbols in the node’s memory. The (t+1)-th term of fe(z),
fe,t, is placed in the header of the outgoing message.

2) Decoding: at each time instant t, each sink node r
decides whether its global encoding kernel matrix is full
rank. If so, it sends an ACK signal to its parent node. An
intermediate node v which has received ACKs from all its
children at a time t0 will send an ACK to its parent, and set
all subsequent local encoding kernel coefficients ke′,e,t to 0 for
all t > t0, e′ ∈ In(v), and e ∈ Out(v). In other words, the
constraint length of the local convolutional code increases until
it is sufficient for downstream sinks to decode. Such automatic
adaptation eliminates the need for estimating the field size or
the constraint length a priori. It also allows nodes within the
network to operate with different constraint lengths as needed.

Once its global encoding kernel matrix Fr(z) is full rank,
a sink node r performs sequential decoding as introduced by
Erez et al. [7] to obtain the source message symbol-by-symbol.
If Fr(z) is not full rank, r stores received messages and wait
for more data to arrive. At time t, the algorithm is considered
successful if all sink nodes can decode. At sink r, the local and
global encoding kernels are ke′,e(z) = ke′,e,0+ke′,e,1z+ · · ·+
ke′,e,tz

t and fe(z) = fe,0 + fe,1z + · · · + fe,tz
t respectively,

where kd,e,i and fe,i are the encoding coefficients at time i.
Sink r can decode successfully if there exists at least m linear
independent incoming channels, i.e., the determinant of Fr(z)
is a non-zero polynomial. At time t, Fr(z) can be written
as Fr(z) = F0 + F1z + · · · + Ftz

t, where Fi is the global
encoding kernel matrix at time i. Computing the determinant
of Fr(z) at every time instant is complex, so we test instead
the following conditions, introduced in [11], [12] to determine
decodability at a sink r. The first condition is necessary, while
the second is both necessary and sufficient.

1) rank
(
F0 F1 · · · Ft

)
= m

2) rank(Mt)− rank(Mt−1) = m, where

Mi =


F0 F1 · · · Fi

0
.

...
0 · · · F1 F1

0 · · · 0 F0

 .

Each sink r checks the two conditions in order. If both pass, r
sends an ACK signal to its parent; otherwise, it waits for more
data to arrive. Observe that as time progresses, Fr(z) grows in
size, until decodability is achieved. This scheme for verifying
the invertibility of Fr(z) is based on the theory of decodable
convolutional codes [12], which transfers the determinant
calculation of a polynomial matrix into the rank computation
of extended numerical matrices. We do not elaborate on the
details and refer interested readers to the original work.

C. Algorithm Statement for Cyclic Networks

In a cyclic network, a sufficient condition for a convolu-
tional code to be successful is that the constant coefficient
matrix consisting of all local encoding kernels be nilpotent
[11], [13]; this condition is satisfied if we code over an acyclic
topology at time 0 [11]. In other words, at time 0, we want
to remove a minimal number of edges such that the network
becomes acyclic, and to choose Kv(0) randomly for each v

over the resulting acyclic network. This process is essentially
the problem of finding the minimal feedback edge set, which
is NP-hard [7]. Approximation algorithms with polynomial
complexity and other possible heuristic algorithms exist, but
we do not give detailed descriptions here owning to the lack
of space. The goal is to guarantee that each cycle contains at
least a single delay. After initialization, the algorithm proceeds
exactly the same as in the acyclic case.

III. ANALYSIS OF ARCNC

A. Success probability

Discussions in [2], [3], [13] state that in a network with
delays, ANC gives rise to random processes which can be
written algebraically in terms of a delay variable z. In other
words, a convolutional code can naturally evolve from the mes-
sage propagation and the linear encoding process. ANC in the
delay-free case is therefore equivalent to CNC with constraint
length 1. Similarly, using a CNC with constraint length l > 1
on a delay-free network is equivalent to performing ANC on
the same network, but with l − 1 self-loops attached to each
encoding node. Each self-loop carries z, z2, . . . , zl−1 units of
delay respectively. The ARCNC algorithm we have proposed
therefore falls into the framework given by Ho et al. [3], in
the sense that the convolution process either arises naturally
from cycles with delays, or can be considered as computed
over self-loops appended to acyclic networks. From [3], we
have the following theorem,

Theorem 3.1: For multicast over a general network with d
sinks, the ARCNC algorithm over Fq can achieve a success
probability of at least (1 − d/qt+1)η at time t, if qt+1 > d,
and η is the number of links with random coefficients.

Proof: At node v, the local encoding kernel ke′,e(z) at
time t is a polynomial with maximal degree t, i.e., ke′,e(z) =
ke′,e,0 + ke′,e,1z + · · · + ke′,e,tz

t, where ke′,e,i is randomly
chosen over Fq . If we group the encoding coefficients, the
ensuing vector, ke′,e = {ke′,e,0, ke′,e,1, · · · , ke′,e,t}, is of
length t + 1, and corresponds to a random element over the
extension field Fqt+1 . Using the result in [3], we conclude
that the success probability of ARCNC at time t is at least
(1− d/qt+1)η , as long as qt+1 > d.

We could similarly consider the analysis done by Balli et
al. [14], which states that the success probability is at least
(1−d/(q−1))|J|+1, |J | being the number of encoding nodes,
to show that a tighter lower bound can be given on the success
probability of ARCNC, when qt+1 > d.

B. Stopping time

We define the stopping time Ti for sink i, 1 ≤ i ≤ d, as
the time it takes i to achieve decodability. Also denote by TN

the time it takes for all sinks in the network to successfully
decode, i.e., TN = max{T1, . . . , Td}. Then we have:

Corollary 3.2: For any given 0 < ε < 1, there exists a
T0 > 0 such that for any t ≥ T0, ARCNC solves the multicast
problem with probability at least 1− ε, i.e., P (TN > t) < ε.

Proof: Let T0 =
⌈
lgq d− lgq(1− η

√
1− ϵ)

⌉
−1, then T0+

1 ≥ ⌈logq d⌉ since 0 < ε < 1, and (1 − d/qT0+1)η > 1 − ε.

Applying Theorem 3.1 gives P (TN > t) ≤ P (TN > T0) <
1− (1− d/qt+1)η < ε for any t ≥ T0.

Since Pr{∪∞
i=t[TN ≤ t]} = 1 − Pr{∩∞

i=t[TN > t]} ≥
1−Pr[TN > t], Corrollary 3.2 shows that as t goes to infinity,
ARCNC converges and stops in a finite amount of time with
probability one for a multicast connection.

Another relevant measure of the performance of ARCNC
is the average stopping time E[T] = 1

d

∑d
i=1 Ti. Observe that

E[T] ≤ E[TN], where

E[TN] =
∞∑
i=0

tP (TN = t)

=

⌈lgqd⌉−1∑
t=1

P (TN ≥ t) +
∞∑

t=⌈lgqd⌉

P (TN ≥ t)

≤ ⌈lgqd⌉ − 1 +
∞∑

t=⌈lgqd⌉

[1− (1− d

qt
)η]

= ⌈lgqd⌉ − 1 +

η∑
k=1

(−1)k−1

(
η
k

)
dk

q⌈lgqd⌉k − 1
.

When q is large, the summation term becomes 1− (1−d/q)η

by the binomial expansion. Hence as q increases, the second
term above diminishes to 0, while the first term ⌈lgqd⌉ − 1 is
0. E[T] is therefore upper-bounded by a term converging to
0; it is also lower bounded by 0 because at least one round of
random coding is required. Therefore, E[T] converges to 0 as
q increases. In other words, if the field size is large enough,
ARCNC reduces in effect to RLNC.

Intuitively, the average stopping time of ARCNC depends
on the network topology. In RLNC, field size is determined
by the worst case node. This process corresponds to having
all nodes stop at TN in ARCNC. ARCNC enables each node
to decide locally what is a good constraint length to use,
depending on side information from downstream nodes. The
corresponding effective field size is therefore expected to be
smaller than in RLNC. Two possible consequences of a smaller
effective field size are reduced decoding delay, and reduced
memory requirements.

C. Complexity

To study the computation complexity of ARCNC, first ob-
serve that once the adaptation process terminates, the amount
of computation needed for the ensuing code is no more than
a regular CNC. In fact, the expected computation complexity
is proportional to the average code length of ARCNC. We
therefore omit the details of the complexity analysis of regular
CNC here and refer interested readers to [7].

For the adaptation process, the encoding operations are
described by fe,t =

∑
e′∈In(v)(

∑t
i=0 ke′,e,ife′,t−i). If the

algorithm stops at time TN , then the number of operations in
the encoding steps is O(Din|E|T 2

Nm), where Din represents
the maximum input degree over all nodes.

To determine decodability at a sink r, we check if the
rank of the global encoding matrix Fr(z) is m. A straight-
forward approach is to check whether the determinant of Fr(z)

is a non-zero polynomial. Alternatively, Gaussian elimination
can be applied. At t, because Fr(z) is an m × |In(r)|
matrix and each entry is a polynomial with degree t, the
complexity of checking if Fr(z) is full rank is O(D2

in2
mmt2).

Instead of computing the determinant or using Gaussian elim-
ination directly, we propose to check the conditions given
in Section II-B. For each sink r, at time t, determining
rank

(
F0 F1 · · ·Ft

)
requires a computation complexity

of O(D2
inmt2). If the first test passes, we then need to calcu-

late rank(Mt) and rank(Mt−1). Observe that rank(Mt−1)
was computed during the last iteration. Mt is a (t+1)|In(r)|×
(t + 1)|In(r)| matrix over field Fq . The complexity of cal-
culating rank(Mt) by Gaussian elimination is O(D2

inmt3).
The process of checking decodability is performed during the
adaptation process only, hence the computation complexity
here can be amortized over time. In addition, as decoding
occurs symbol-by-symbol, the adaptation process itself does
not impose any additional delays.

IV. EXAMPLES

ARCNC adapts to the topology of general networks by
locally increasing the convolutional code length, and gener-
ating coefficients randomly. Such adaptation allows nodes to
code with different lengths, thus possibly reducing decoding
delay and memory overheads associated with overestimating
according to the worst case. As examples, next we consider a
small combination network to illustrate how ARCNC operates,
and how delay and memory overheads can be measured. We
also consider a general combination network to show that
ARCNC can obtain significant gains in decoding delay here.

A
(
n
m

)
combination network contains a single source s

that multicasts m independent messages over Fq through n
intermediate nodes to d sinks [15]; each sink is connected to a
distinct set of m intermediate nodes, d =

(
n
m

)
. Assuming unit

capacity links, the min-cut to each sink is m. In combination
networks, routing is insufficient and network coding is needed
to achieve the multicast capacity m. Decoding delay at a sink
r is defined as the time between the start of the coding process,
and when the first symbol is decoded at r.

A. A
(
4
2

)
combination network

Fig. 1 illustrates a simple
(
4
2

)
combination network. To see

how ARCNC operates, let the messages generated by source
s be

∑∞
t=0(at, bt)z

t. Assume field size is q = 2. Observe
that only s is required to code; intermediate nodes relay on
received messages directly. At time 0, s chooses randomly the
local encoding kernel matrix. Suppose the realization is

Ks(z)|t=0 =

(
1 0 1 1
0 1 1 1

)
.

The first 5 sinks can therefore decode directly at time 0,
but sink r6 cannot. Therefore, at time 1, s increases the
convolutional code length for the right two intermediate nodes.
Suppose the updated local encoding kernel is

Ks(z)|t=1 =

(
1 0 1 1 + z
0 1 1 1

)
.

s 0 0 1 1(,) (,)a b a b z+ +…

1  0  1  1 1
z

   
+

m
1

m
2

m
3

m
4

1

0

 
 
 

0

1

 
 
 

1

1

 
 
 

1 1

1 0
z

   
+   

   

0

1

a

a

 
 
 
 

0

1

b

b

 
 
 
 

0 0

1 1

a b

a b

⊕ 
 

⊕ 
 

0 0

0 1 1

a b

a a b

⊕ 
 

⊕ ⊕ 
 

1 
 
 ⋮

1 
 
 ⋮

1 1 
 
 ⋮

0 1 1 
 
 ⋮

r
1

r
6

r
2

r
3

r
4

r
5

Fig. 1. A
(4
2

)
combination network.

Sink r6 is now capable of decoding. It therefore acknowledges
its parents, which in turn causes s to stop incrementing the
corresponding code length. By decoding sequentially, r6 can
recover messages (a0, b0) at time 1, (a1, b1) at time 2, and
(at−1, bt−1) at time t. Observe that for sinks r2 to r5, which
are also connected to the two right intermediate nodes, the
global encoding kernels increases in length until time 1 as
well. In other words, these sinks decode with minimal delay
of 0, but require twice the memory when compared to r1.

In this example, at the single encoding node s, the code
lengths used are (1, 1, 2, 2), with an average of 3/2. At
the sinks, the decoding delays are (0, 0, 0, 0, 0, 1), with an
average of 1/6. For the same

(
n
2

)
combination network, the

deterministic BNC algorithm given by Xiao et al. [8], designed
specifically for combination networks, requires an average
decoding delay of 1, since the entire block of data needs to be
received before decoding, and the block length is 2. In the next
subsection we will show that such gains in decoding delay can
be achieved in general combination networks as well. In terms
of memory, the BNC algorithm requires 4 bits per node to store
data, while ARCNC requires 2 bits at r1, and 4 bits at all
other nodes, with an overall average of 42

11 . Of course, it may
possibly need more coding rounds, and the average rounds
needed is 2.67. As an example, it implies ARCNC learns the
topology of this network automatically, and achieves much
lower decoding delays without compromising the amount of
memory needed, when compared to the deterministic BNC
algorithm designed specifically for combination networks.

Furthermore, if RLNC is used, even for a single sink r1
to achieve decodability at time 0, the field size needs to be a
minimum of 23 for the decoding probability to be 49

64 . More
coding rounds will be needed to achieve a higher success
probability. In other words, with RLNC over F23 , the average
decoding delay will be higher than 1, and the amount of
memory needed is at the minimum 6 bits per node. In other
words, ARCNC adapts to the network topology at significantly
lower costs than RLNC, achieving both lower decoding delays
and lower memory overheads, while operating with lower
complexities in a smaller field.

B. Decoding delays in a
(
n
m

)
combination network

We now consider a general
(
n
m

)
combination network, and

show that the average decoding delay can be significantly im-
proved by ARCNC when compared to the deterministic BNC

algorithm. Recall from definitions in Section III-B that the
average decoding delay is the average stopping time E[T] =

E
[
1
d

∑d
i=1 Ti

]
= E[Ti]. At time t−1, for sink node i, if it has

not stopped increasing the constraint length of the convolution
code, the global encoding kernel is a m×m matrix of degree
t−1 polynomials in z over Fq . This matrix has full rank with
probability Q = (qtm−1)(qtm−qt) · · · (qtm−qt(m−1))/qtm

2

,
so the probability that sink i decodes after time t − 1 is
P (Ti ≥ t) = 1−Q. The average stopping time over all sink
nodes is then upper bounded by

E[T] = E[Ti] =
∞∑
t=1

P (Ti ≥ t) <
∞∑
t=1

(1− (1− 1

qt
)m)

=
m∑

k=1

(−1)k−1

(
m
k

)
1

qk − 1
, ETUB (1)

First observe that E[T] a function of m and q, independent
of the value of n. In other words, if m is fixed, but n increases,
the expected decoding delay does not change. Next observe
that if q is large, ETUB becomes 0, consistent with the general
analysis in Section III-B.

A similar upper bound can be found for the variance of T
as well. It can be shown that

var(T) =
E[T 2

i]

d
+

1

d2

 d∑
i=1

∑
j ̸=i

E[TiTj]

− E2[Ti]

<
ET 2

UB

d
+

m

n
ρUB − (1 +

m

n
)(ETLB)

2 , (2)

where ET 2
UB is an upperbound for E[T 2

i], ρUB is an upper-
bound for E[TiTj]i ̸=j , and ETLB is a lowerbound for E[Ti].
All three quantities are functions of m and q, independent
of n. If m and q are fixed, as n increases, d also increases,
and var(T) diminishes to 0. Combining this result with a
bounded expectation, what we can conclude is that even if
more intermediate nodes are added, a large proportion of the
sink nodes can still be decoded within a small number of
coding rounds. On the other hand, if m and n are comparable
in scale, for example, if m = n/2, then the bound above
depends on the exact value of ET 2

UB , ρUB and ETUB . We
leave the detailed analysis of this case for journal version.

Comparing with the deterministic BNC algorithm proposed
by Xiao et al. [8], we can see that for a large combination
network, with fixed q and m, ARCNC achieves much lower
decoding delay. In the BNC scheme, the block length is
required to be p ≥ n−m at the minimum. Thus the decoding
delay increases at least linearly with n. Similar comparisons
can be made with RLNC, and it is not hard to see that we can
obtain gains in both decoding delay and memory.

So far we have used
(
n
m

)
combination networks explicitly as

an example to illustrate the operations and the decoding delay
gains of ARCNC. It is important to note, however, that this is a
very special network, in which only the source node is required
to code, and each sink shares at least 1 parent with other

(
n−1
m−1

)
sinks. If sink r cannot decode, all other

(
n−1
m−1

)
sinks sharing

parents with r are required to increase their memory capacity.
Therefore, in combination networks, we do not see much gains
in terms of memory overheads when compared with BNC
algorithms. In more general networks, however, when sinks
do not share ancestors with as many other sinks, ARCNC can
achieve gains in terms memory overheads as well, in addition
to decoding delay. Due to space limitations, we do not give
any detailed analysis, but it can be shown, for example, that
in an umbrella-shaped network, memory overheads can be
significantly reduced with ARCNC when compared to other
network codes.

V. CONCLUSION

We propose an adaptive random convolutional network code
(ARCNC), which operates in a small field, and locally and
automatically adapts to the network topology by incrementally
growing the constraint length of the convolution process. We
show through analysis that ARCNC performs no worse than
random algebraic linear network codes, and illustrate through
a combination network example that it can reduce the average
decoding delay significantly. ARCNC can also reduce memory
overheads in networks where sinks do not share the majority of
their ancestors with other sinks. One possible future direction
of analysis is to characterize the behavior of this algorithm
over random networks, the results of which will enable us to
decide on the applicability of ARCNC to practical systems.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,”
IEEE Trans. on Inform. Theory, vol. 46, no. 4, pp. 1204–1216, 2002.

[2] S. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. on
Inform. Theory, vol. 49, no. 2, pp. 371–381, 2003.

[3] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. on Inform. Theory, vol. 52, no. 10, pp. 4413–4430, 2006.

[4] M. Médard, M. Effros, D. Karger, and T. Ho, “On coding for non-
multicast networks,” in Proc. of the 41st Allerton Conference, vol. 41,
no. 1, 2003, pp. 21–29.

[5] S. Jaggi, P. Sanders, P. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen, “Polynomial time algorithms for multicast network code
construction,” IEEE Trans. on Inform. Theory, vol. 51, no. 6, pp. 1973–
1982, 2005.

[6] S. Li and R. Yeung, “On convolutional network coding,” in Proc. of
IEEE Int. Sym. on Info. Theory, 2006, pp. 1743–1747.

[7] E. Erez and M. Feder, “Convolutional network codes,” in Proc. of IEEE
Int. Sym. on Info. Theory (ISIT), 2005, p. 146.

[8] M. Xiao, M. Médard, and T. Aulin, “A binary coding approach for
combination networks and general erasure networks,” in Proc. of IEEE
Int. Sym. on Info. Theory (ISIT), 2008, pp. 786–790.

[9] M. Kim, C. Ahn, M. Médard, and M. Effros, “On minimizing network
coding resources: An evolutionary approach,” in Proc. NetCod, 2006.

[10] S. Jaggi, M. Effros, T. Ho, and M. Medard, “On linear network coding,”
in Proc. of the 42nd Allerton Conference, 2004.

[11] N. Cai and W. Guo, “The conditions to determine convolutional network
coding on matrix representation,” in Proc. NetCod, 2009, pp. 24–29.

[12] J. MasseyY and M. Sain, “Inverses of linear sequential circuits,” IEEE
Trans. on Comp., vol. 100, no. 4, pp. 330–337, 1968.

[13] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. on Networking, vol. 11, no. 5, pp. 782–795, 2003.

[14] H. Balli, X. Yan, and Z. Zhang, “On randomized linear network codes
and their error correction capabilities,” IEEE Trans. on Inform. Theory,
vol. 55, no. 7, pp. 3148–3160, 2009.

[15] R. Yeung, S. Li, N. Cai, and Z. Zhang, “Network Coding Theory:
Single Sources,” Foundations and Trends R⃝ in Communications and
Information Theory, vol. 2, no. 4, pp. 241–329, 2005.

